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Two-dimensional turbulence on the surface of a sphere 

By CHA-ME1 TANG? A N D  STEVEN A. ORSZAG 
Department of Mathematics, Massachusetts Institute of Technology, Cambridge 

(Received 25 August 1977)  

Large-scale atmospheric flow shares certain attributes with two-dimensional turbu- 
lence. I n  this paper, we study the effect of spherical geometry on two-dimensional 
turbulence. 

Energy transfer is multi-component in spherical geometry in contrast to energy 
transfer among triads of wave vectors in Cartesian geometry. It follows that energy 
transfer is more local in spherical than in Cartesian geometry. Enstrophy transfer to 
higher wavenumbers in spherical geometry is less than enstrophy transfer to higher 
wavenumbers in Cartesian geometry. Since both energy and enstrophy are inviscid 
constants of motion, the back transfer of energy is also less in spherical than in 
Cartesian geometry. Therefore, with a finite viscosity, enstrophy decays more slowly 
in spherical geometry than in Cartesian geometry. Here these conjectures are tested 
numerically by spectral methods. The numerical results agree well with the conjec- 
tures. 

1. Introduction 
I n  this paper, we compare two-dimensional turbulent flows on the surface of a sphere 

with two-dimensional turbulent flows in Cartesian geomet,ry. Two-dimensional turbu- 
lent flow in Cartesian geometry has been the subject of much study (Onsager 1949; 
Lee 1951; Fjartoft 1953; Kraichnan 1967; Batchelor 1969; Lilly 1971; Leith 1971; 
Herring et al. 1974). While two-dimensional turbulence is not yet realizable in the 
laboratory, it is thought that these flows are relevant to atmospheric dynamics. Three- 
dimensional quasi-geostrophic flow in the atmosphere away from the equator was 
found by Charney (1971) to exhibit two scalar invariants, the total kinetic energy and 
mean-square ' pseudo-potential vorticity ', similar to  the quadratic invariants of 
inviscid two-dimensional turbulence. 

I n  $ 2, we review the important concepts of two-dimensional turbulence in Cartesian 
geometry. In  $3, we formulate the problem in spherical geometry. We shall show that 
the appropriate two-dimensional wavenumber for flows on the sphere is the degree n, 
not the order m of the surface harmonic YE.  Energy and enstrophy transfer will be 
shown to be more local in wave space for two-dimensional turbulence on a sphere than 
for planar turbulence. The consequences of this locality of transfer on spheres will be 
discussed and substantiated by numerical results in $4. 

t Present address : Applied Physics Laboratory, The Johns Hopkins University, Laurel, 
Maryland. 
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2. Two-dimensional turbulence in Cartesian co-ordinates 
In two-dimensional, inviscid, incompressible flow, vortex tubes move with the fluid. 

Vortex tubes cannot be stretched, so enstrophy (mean-square vorticity) cannot be 
produced. Therefore, for two-dimensional, homogeneous, isotropic turbulence, kinetic 
energy and also enstrophy are inviscid constants of motion. These inviscid constraints 
have a profound effect on the nature of viscous turbulence. Unlike the predominantly 
one-way transfer of energy to the small scales in three-dimensional turbulence, energy 
is transferred to the large scales and enstrophy is transferred to the small scales in two 
dimensions. 

The concepts of two-dimensional turbulence in Cartesian geometry may be illns- 
trated by a flow confined within a cyclic box with sides of length 27r. The vorticity 
5% is defined as V x u, where u is the velocity. In two dimensions, u can be represented in 
terms of a stream function + as - (Vk) x 9,. Here Q + and u are functions of (2, y, t ) .  In  
terms of the vorticity and stream function, the Navier-Stokes equations are 

a g a t  = - J(+, 6) + Y V ~ ,  (1) 

where J(+, {) = a($, {)/a(x, y) and v is the kinematic viscosity, and 

{ = V2$. (2) 

When { and 9 are expanded in the Fourier series 

k k 

reality of {(x) and +(x) requires that {(k) = g*( - k) and +(k) = +*( - k). In  a 
numerical simulation of (1 ) and (2) by spectral methods only a finite number of modes 
are retained in (3) (Herring et al. 1974). 

The energy in mode k is 

U(k) = (87r2)-'/ IV$-(2dx = $PI+(k)12, (4) 

where k = I kl . The energy balance equation is 

where 

and 

is the energy in the wavenumber E. T(k,p,q) is the energy in mode k gained from 
wavenumbers p and q: explicitly, 

The enstrophy of mode k is 

( 8 7 ~ ~ ) - ' J { ~ d ~  = 1{(k)I2 = k2U(k). (7) 
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The total energy and enstrophy are related by 

dE/dt  = - BvF, d F / d t  = - q, (8) 

where E = C E ( k ) ,  F = 2 k2E(k),  17 = 2~ k4E(k)  
k k k 

are the total energy, enstrophy and enstrophy dissipation rate respectively. 

expressed by the relation 
In Cartesian geometry, energy conservation involves only triads of modes and is 

(9) 

(10) 

T ( k ,  P ,  9) + T(P,  q, k )  + T(q7 k, P )  = 0 

k 2 W ,  P ,  9) + p 2 T ( p ,  q, k )  +q2T(q, k ,  P )  = 0. 

for k = p + q. Conservation of enstrophy is expressed by the triad relation 

If one of the modes k,  p or q is the source or sink for energy and enstrophy transfer, it  
must be the intermediate wavenumber. 

Kraichnan (1 967) showed that the existence of the two inviscid constants of motion, 
energy and enstrophy, implies that two-dimensional turbulence admits two formal 
inertial ranges. If turbulence is forced isotropically at a wavenumber k N k,, then a 
k-8 backwards-energy-transfer inertial range should be found for k < ki and a kk3 
enstrophy-transfer inertial range should be found for k 9 ki.  

Several scales of wavenumbers and Reynolds numbers have been introduced to 
characterize two-dimensional turbulence. Following Lilly (1 971) and Herring et al. 
(1974) the large-scale Reynolds number RL is defined as 

RL = Ev-ly-f. (11 )  

The enstrophy-dissipation wavenumber is defined as 

k, = qiv-4. 

The quantitative theory of the enstrophy-transfer inertial range suggests that k4E( k )  
decays rapidly for k 9 k, and that wavenumbers much larger than k, have no signifi- 
cant effect on wavenumbers smaller than k,. In other words, the scales that contribute 
to the energy and enstrophy dynamics are k 5 k,. 

A non-dimensional measure of the rate of production of the mean-square vorticity 
gradient is the two-dimensional skewness factor 

S,  = [x k4T(k)]  2vq-lF-4. 
k 

3. Two-dimensional turbulence on a sphere 
For flow on the surface of a unit sphere, only the 0 and q5 components of the velocity 

u are non-zero. Therefore the vorticity is given by (3, = V x u and the velocity can be 
represented by a Stokes stream function as u = - (V@) x 9,. The equations of motion in 
a rotating co-ordinate system are 

where 

and 

Here SZ is the angular velocity of the sphere. 
11-2 



308 C.-M. Tang and S.  A .  Orszag 

Since 5 and @ are scalar variables, they may be expanded as 

N N  

Iml= 0 n= Irnl 
\Y,  5)  = C C ($nm, Cnm) Y?(O, $1. 

Here YE(O, $), the surface harmonic of degree n and order m, is defined as 

Yg(07 $) = bn, P;(cosO) eim+ (17) 

in terms of the associated Legendre polynomial Pz(  COSO) and 

bn, = [(2n+ l)(n-m)!]3[4n(n+m)!]*. 

The velocity components uo and uI behave like vectors under a change of co-ordinate 
frame so they may be expanded as 

There has been much work (Horn & Bryson 1963; Wiin-Nielsen 1967; Julian et al. 
1970) on the analysis of the spectrum of large-scale kinetic energy in the atmosphere 
using the hemispherical wavenumber m. However, the one-dimensional wavenumber 
m cannot be used in the same way as the two-dimensional wavenumber k in Cartesian 
geometry. When large-scale motions of the atmosphere are of interest, curvature 
becomes significant and energy spectra should be expressed in terms of n. To see why, 
we recall that the physical significance of k2 in Cartesian geometry is due to the fact 
that dissipation is proportional to k2E(k). In spherical geometry, dissipation of a mode 
of unit amplitude is proportional to V2Yz = -n(n+ 1 )  YF, which indicates that the 
most appropriate choice of wavenumber is n, not m. With n as the wavenumber, we 

obtain N 

E = C E ( n ) ,  (19) 
where n=l 

and 

Baer (1 972) was the first to propose the use of n as the wavenumber, and compared 
results analysed using n with those analysed using m. His expressions for E ( n )  can 
be taken as only a rough approximation of the correct spectrum when the truncation 
N is large because he did not use (18) for the velocity expansion. Baer's results showed 
that the two different ways of analysing data lead to significant differences in the slopes 
of calculated spectra. The trend is that when the index n is used the peak of the energy 
E ( n )  occurs at approximately n = 8-9. The behaviour of E ( n )  for n > 9 is roughly 
given by E(n)cc n-3, at least for 9 5 n 5 30. The same data analysed using m have a 
much steeper slope. Most of the energy lies in the lowest hemispherical wavenumbers. 
The region of the energy spectrum behaving like m-3 contains only about 10 wave- 
numbers. 

Much data analysis from atmospheric observations involves only one component of 
the velocity, usually the east-west flow. The north-south flow is assumed to be in 
energy equipartition at high wavenumbers with the east-west flow. Special care is 
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required in this data analysis. Let us consider the single wave whose stream function 
is Re ($,, Y z ) .  The corresponding velocity components are given by 

and 

The energy in the velocity in the 6 direction is 

The energy in the velocity in the # direction is 

where 

c = 2nb,-,,, b,+l,n, sin-lo E'F-l(~) Pr+r(6) do. 
/OZ 

However, the use of u,, and vnm can be confusing. The total energy is in(n + 1 )  ($,,I2 
and it belongs to the wavenumber n. The expressions for -@,(n,m) and B+(n,m) are 
clearer when writt,en in terms of the stream function $nm: 

9 8  = it(n+3)ml$lnml2, -@$ = $[n(n+l)-(n+i)m11$nrn1~. ( 2 3 )  

In  isotropic turbulence, the average properties of $nm are the same for all m for a 
given wavenumber n. Summing over all modes m gives 

n 

m= 0 
EJn) = ii(n+B) X ml$nrnl2 N a(n3+3n2) I$nmI2. 

Eg(n) N B(n3 + %n2) I $nmlz- 

(24a) 

(24b)  
Similarly, 

When n is large, there is approximate partition of energy between the two components 
of kinetic energy. 

Spectral analysis using m as the index is frequently preferred because it involves 
only Fourier transforms in 46. The calculation of E(n) is more complicated. To effect 
this calculation, it is best to take advantage of the relationship between u8 and 9. 
u,, can be calculated from u,(8, $) using Fourier transformation in # and Gaussian 
quadrature in 8, while $nm, which is needed to calculate the energy, is simply 

$nm = (imbnm)-'unrn. 

If the flow is truly two-dimensional, ui is also uniquely determined by unm. The 
accuracy of the data analysis can be checked by comparing the u$ computed from u8 
with data on ug. 

The energy balance equation in spherical co-ordinates is 

[a /a t  + 2vn(n + l ) ]  E(n) = T(n) ,  (25 )  

where T ( n )  is the nonlinear energy transfer into modes n. 
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Let us contrast the nature of nonlinear processes in Cartesian and spherical co- 
ordinates. In Cartesian geometry suppose that $ is composed of two waves as follows: 

$(x,Y) = C , [ C O S ( ~ X + ~ ~ ) + C O S ( ~ ~ X + ~ ~ ) ] ,  (26a) 

where the waves are denoted below as (9, 8) and (1 0, 9) and C, is a constant. The result 
of the nonlinear interaction J($ ,  5 )  consists of components ( 1 , l )  and (1 9,17). On the 
other hand, in spherical geometry the two-wave field 

$(e, $1 = c, ( m e )  cos 89 +plso(e) cos 99), (26b) 

where C, is another constant, results in the nonlinear terms (2,1), (4,l) (which is zero), 
(6,1),(8,l),(10,1),(12,1),(14,1),(16,1),(18,1)and(18,17).(Seefigure1.)In,spherical 
co-ordinates the transfer in n is no longer limited to three wavenumbers. In  figure 2 (a) 
we have plotted the initial energy transfer functions in Cartesian and spherical geo- 
metries for this example. The enstrophy transfer functions in Cartesian and spherical 
geometries are plotted in figure 2 (b ) .  

The implications of the multi-component transfer mechanism in spherical geometry 
are significant. If a given amount of enstrophy leaving a wavenumber n is spread into 
more than two waves between p and q, the total energy transferred will also be spread 
betweenp and q. As a result, less energy will go to the lower wavenumbers in the multi- 
component spherical interaction than in the Cartesian triad interaction. The transfer 
of enstrophy to the larger scales will also be less in spherical geometry. Kraichnan 
(1967) assumed that nonlinear interaction is local in wavenumber space, so that signifi- 
cant interactions giving energy or enstrophy transfer take place only between com- 
parable wavenumbers. This assumption is satisfied better in spherical geometry than 
in Cartesian geometry. 

The definitions of the Reynolds number, the Kolmogorov dissipation wavenumber 
and the skewness factor in spherical geometry are given in (1 1)-( 13), respectively, with 
E,  F and 71 evaluated in terms of the spherical energy function E(n)  rather than the 
Cartesian function E ( k ) .  

310 C.-M. Tang and 8. A .  Orszag 

FIGURE 1. An example of nonlinear wave interaction in the two different geometries. (a) In 
Cartesian co-ordinates, the nonlinear transfer of two modes (9, 8) and (10, 9) results in energy 
and enstrophy changes for (1, 1) and (19, 17). (b) In  spherical co-ordinates, the nonlinear transfer 
of two modes (9, 8) and (10, 9) results in energy and enstrophy changes for (2, l ) ,  (4, 1) (which 
happens to be zero), (6, l),  (8, 1), (10, l ) ,  (12, l ) ,  (14, l ) ,  (16, l ) ,  (18, 1) and (18, 17). 
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FIGURE 2. A plot of the initial rate of (a) energy and ( b )  enstrophy transfer to modes n in 
Cartesian and spherical geometry with an initial stream function given by (26). A, Cartesian 
geometry, stream function (26a) with C, chosen such that mode (1, 1)  has unit amplitude; 0, 
spherical geometry, stream function (26b) with C, is chosen such that mode (2, 1) has unit 
amplitude. 
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4. Numerical results 
We have used numerical simulation to verify some of the postulates in $3. The 

present calculations are analogous to those performed in a cyclic box in Cartesian 
geometry by Herring et al. (1  974) using Fourier series and the pseudo-spectral method. 
The numerical methods used to solve (1  4) and (1 5) in spherical geometry are described 
elsewhere (Orszag 1974; Tang 1978). 

In  Cartesian geometry, Herring et al. generated an initial random field with an energy 
spectrum 

where uo = 1 and k, = #. They found that a good measure of the accuracy of simulation 
is that all scales of motion that make appreciable contributions to the enstrophy 
dissipation rate should be resolved. We know that k4E(k) should decay exponentially 
for k > k,. Thus Herring et al. found that spectral methods using a wavenumber 
truncation of 32 (64 x 64 modes) are marginally accurate for v = 0.0025, or a Reynolds 
number of 350. 

Let us now compare turbulence in Cartesian and spherical geometry. In  spherical 
geometry, the initial energy spectrum is assumed to be (27) with k replaced by n. It is 
not possible to pick the initial conditions to be identical for spherical and Cartesian 
geometries. Only the energy spectra of the initial flows can be chosen equal. 

Truncation at  a wavenumber of 32 is used for all the simulations discussed below. Six 
calculations are compared: Cartesian geometry with v = 0.0025 and v = 0.005, 
spherical geometry with and without rotation and with v = 0.0025 and v = 0.005. The 
choices v = 0.005 and v = 0.0025 correspond to  initial Reynolds numbers of 140 and 
350, respectively. The results are plotted in figures 3-8. We make no attempt, in this 
paper to investigate inertial-range spectra of turbulence on spheres because of the 
limited wavenumber cut-off at  32. It seems that effective investigat,ion of the inertial 
range requires as least twice this resolution (see Herring et al. 1974). 

As in Cartesian geometry, the enstrophy dissipation spectra plotted in figure 3 show 
that the highest initial Reynolds number that can be simulated accurately with trun- 
cation at  a wavenumber of 32 is approximately 350. Further discussion of the accuracy 
of these calculations is given by Tang (1978). All the calculations reported here are 
believed to be in error by no more than 1 %. 

For a given n, the energy is distributed evenly among all m modes in spherical 
geometry. This ensures that the initial conditions are isotropic. In  this case, the turbu- 
lence should remain approximately isotropic at  later times. In figure 4 we plot contours 
of -In (E(n, m ) )  a t  t = 2.88. The lines of constant energy have remained approxi- 
mately horizontal. 

The two-dimensional skewness factor S,  is a non-dimensional measure of the rate of 
production of enstrophy dissipation by the nonlinearity and is also an indication of the 
development of turbulence. In  figure 5 we plot S,(t) vs. t for all six runs. In general, 
S,(t) grows rapidly for t < 0.5 then levels off to a relatively steady value at  later 
times. The turbulence is well established after t = 1; here we report results up to 
t = 3.0. At the end of the numerical simulation, significant portions of the initiaI 
enstrophy are still unaffected by dissipation, and the results within tha t  time interval 
are minimally affected by numerical errors. 

E(k,  t = 0) = ug (k lk , )  exp ( - k/k , ) ,  (27) 
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FIGURE 3. Enstrophy dissipation spectra at t = 1.8. For v = 0.0025: (a) Cartesian geometry; 
(b) spherical geometry without rotation; (e) spherical geometry with R = 1. For v = 0.005: 
(d )  Cartesian geometry; (e) spherical geometry without rotation; (f)  spherical geometry with 
R = 1. 

The more local transfer mechanism of spherical geometry limits the transport of 
enstrophy to large wavenumbers and energy to small wavenumbers. Thus the produc- 
tion of Xk4T(k) in Cartesian geometry is expected to be larger than that of 

Xn2(n + l ) ,T(n)  

in spherical geometry. The skewness factor S,  is a non-dimensional measure of these 
quantities. The value of S,  plotted in figure 5 are much larger for Cartesian than for 
spherical geometry. 

In  figure 6 we plot energy and enstrophy transfer as functions of wavenumber at  
t = 1.8. Energy transfer to small wavenumbers is much larger in Cartesian than in 
spherical geometry. Enstrophy transfer in Cartesian geometry to wavenumbers larger 
than 15 is also larger than in spherical geometry. These observations are consistent 
with the differences in the transfer mechanisms. 
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FIUURE 4. Contours of -In (E(n, nz)) at t = 2.88. 
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FIUURE 5. The two-dimensional skewness factor 8,. (a) v = 0.0025: - - -, Cartesian geometry; 
0, spherical geometry without rotation; +, spherical geometry with R = 1. (71) v = 0.006: 
-, Cartesian geometry; 0, spherical geometry without rotation; x , spherical geometry with 
R = 1. 
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FIauRE 6. (a) Energy transfer and ( b )  enstrophy transfer at t = 1.8. -, Cartesian geometry; 
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FIQURE 7. The enstrophy spectra at t = 1.8. (a)-(f) aa in figure 3. 
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FIUURE 8. (a) Total enstrophy dissipation, ( 6 )  total enstrophy and ( c )  total energy V B .  time. 
Symbols as in figure 6.  
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FIGURE 9. (a )  Energy gain for k = 1 and n = 1 of Cartesian and spherical 
ively. ( b )  Energy gain for k < 2 and n < 2. ( c )  Energy gain for k < 3 and n 
figure 5. 

geometries respect- 
< 3. Symbols as in 

Figure 7 is a plot of the enstrophy spectrum for all six tests a t  t = 1.8. For a given 
Reynolds number, the enstrophies for spherical geometry with and without rotation 
are approximately the same, as they should be because rotation affects only large 
scales. R'ith regard to enstrophy spectra, the Cartesian and spherical cases seem to 
agree qualitatively. 

The enstrophy dissipation spectra plotted in figure 3 emphasize more strongly the 
effect of larger mavenumbers. Notice that the enstrophy dissipation in wavenumbers 
in the range 20-30 is greater compared with that in the range 3-6 in Cartesian geometry 
than in spherical geometry. This is consistent with the non-local transfer effect of the 
Cartesian geometry. 

Let us now look at the total enstrophy dissipation as a function of time (see figure 
8n). For both Reynolds numbers considered, the enstrophy dissipation is larger in 
Cartesian than in spherical geometry. This has already been hinted a t  by the enstrophy 
dissipation spectra. 

Since the enstrophy dissipation is larger for Cartesian geometry, the enstrophies of 
theCartesian casesdecay faster than thosefor spherical geometry as shownin figure 8 ( b ) .  
The decay rates with and without rotation in spherical geometry are almost the same. 

At the same time larger amounts of energy are transferred to the small wavenumbers 
for non-local than for more local energy transfer. Since the smaller wavenumbers have 
slower decay rates, the total energy as function of time (figure 8 c )  decays more slowly 
in Cartesian than in spherical geometry. 

The differences in the total energy levels between Cartesian and spherical geometry 
are much larger than the differences in the total enstrophy levels. The explanation of 
this result is as follows. I n  figure 9 we plot the energy gains relative to  the total initial 
energy for n < 1, n < 2 and n < 3 (and the corresponding energy gains for k 6 1,  
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FIGURE 10. Wave structures of (a) k = 1 ,  for Cartesian geometry, and (a) n = 1, 
for spherical geometry. 

k < 2 and k 6 3). For the cases n 6 2 (k 6 2) and n < 3 (k 6 3), the energy gains of the 
spherical cases follow the general trend of the Cartesian case. The n = I mode seems to 
be undergoing pure decay. Conservation of momentum does not permit transfer of 
energy to n = 1 modes, because n = 1 modes represent uniform flow, as shown in 
figure 10. 

Owing to the back transfer of energy, energy piles up in lc = 1 in Cartesian geometry, 
while energy piles up in n = 2 in spherical geometry. The back transfer of energy is 
much larger for k = 1 than for n = 2. That is consistent with the non-local transfer 
mechanism for Cartesian geometry. Since Cartesian geometry contains more energy in 
k = I than n = I ,  the decay rate of the total energy of Cartesian geometry is further 
reduced. 

This work was supported by the National Science Foundation under Grant no. 
ATM73-06634. The computations reported here were performed a t  the Computing 
Facility of the National Center for Atmospheric Research, Boulder, Colorado, which is 
supported by t,he National Science Foundation. 
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